

ExpressLabel
Integration Guide

Version 1.10

ExpressLabel
TNT Express

Revision History

Date Version Description

17/09/2008 1.0 First revision of technical user guide for ExpressLabel

04/11/2008 1.1 Add code examples for connecting to ExpressLabel

06/11/2008 1.2 Add PHP code example for connecting to ExpressLabel

11/11/2008 1.3 Add information about label construction and return
message

17/11/2008 1.4 Updates to rendering instructions

17/11/2008 1.5 Processing of feedback

01/09/2009 1.6 Incorporated new guides on barcode size.

23/03/2010 1.7 Incorporated latest Ops Piece Label Specification

02/06/2010 1.8 Added information about the exact match tag

10/09/2010 1.9 Changed Barcode type to Code128 length 28, changed
ascii only characters to utf-8, added SLA statement.

08/12/2010 1.10 Documentation updated to include the new tags in support
of the French domestic label data and a XML connection
example.

Table of Contents
1. Introduction 5

1.1 Legend 6

2. Registration 7

3. Making a request to the TNT server 8
3.1 Service Level Agreement (SLA) 8

4. Example XML Label Request Document 9

5. Input XML format 11
5.1 Header 11
5.2 The LabelRequest element 11
5.3 The consignment element 12
5.4 The ConsignmentIdentity element 12
5.5 The collectionDateTime element 13
5.6 The sender and delivery elements 13
5.7 The contact element 14
5.8 The product element 14
5.9 The account element 14
5.10 The specialInstructions element 14
5.11 The cashAmount element 15
5.12 The totalNumberOfPieces element 15
5.13 The pieceLine element 15

6. Processing the XML Response 17
6.1 High level description of an XML Label Response Document 17

6.1.1 Routing Label Overview 18
6.1.2 Header and Root Element 19
6.1.3 consignment Sections 19

6.2 Detailed description of an XML Label Response Document 20
6.2.1 Logo 20
6.2.2 Market Indicator 20
6.2.3 Transport Mode 21
6.2.4 Free Circulation Indicator 22
6.2.5 Sort Split Indicator 22
6.2.6 Hazardous 23
6.2.7 X-Ray 23
6.2.8 Consignment Number 23
6.2.9 Product 24
6.2.10 Piece 24
6.2.11 Weight 25
6.2.12 Option 26
6.2.13 Customer Reference 26
6.2.14 Account 27
6.2.15 Collection Date 27
6.2.16 Origin Depot 28
6.2.17 Sender & Delivery Address 28
6.2.18 Contact 29

6.2.19 Routing 30
6.2.20 Airport Sort Code 31
6.2.21 Destination Depot 31
6.2.22 Postcode / Cluster Code 32
6.2.23 Legal Comments 33
6.2.24 Cash Amount 33
6.2.25 Special instructions 33
6.2.26 Barcode 33
6.2.27 Barcode For Customer 34

7. Errors 35
7.1 Application generated errors 35
7.2 Table of application generated error codes, messages and resolutions 36

8. Connecting to ExpressLabel 45
8.1 Choosing a request protocol 45

8.1.1 XML 45
8.1.2 Hessian 45
8.1.3 Burlap 45

8.2 Java XML Connection Example 46
8.3 Java Hessian Connection Example 46

8.3.1 Create a Marshaller 47
8.3.2 Populate the request data objects 47
8.3.3 Create the client integrator 48

8.4 PHP Example 50

9. Appendix A: XML elements definition (input) 53

10. Appendix B : XSD Data Types 63
10.1 Custom Data Types 64

11. Appendix C: ISO 3166-1 Alpha-2 Country Codes 65

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 5 of 80

1. Introduction
ExpressLabel is part of the ExpressConnect family, providing B2B interfaces into TNT's operational systems. The
ExpressLabel interface is used to generate routing label data for TNT Consignments. This function, which is
traditionally done by the depot, expedites consignment processing.

An example of a TNT routing label is given below. It contains information that is critical for timely delivery of the
consignment and which maximises efficiency of the network through pre-validation of the information.

This manual provides a technical guide to the ExpressLabel interface. It is designed to help developers understand
the interface sufficiently to program an application to request label data to be used in rendering a routing label.
Using XML (eXtensible Markup Language), ExpressLabel provides routing label functionality for batches of
consignments. The majority of examples in the document will be XML based as it is easier to understand the data
involved.

The resultant response contains the data required to create labels for the consignments submitted. There is a 1-to-
many relationship between consignments and labels as each consignment may have several pieces, each of which
requires a label. A number of schemes have been designed for rendering the output as a label generally involving
XSL Transformation, whether to create HTML or PDF documents.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 6 of 80

An ExpressConnect Login Id will be arranged by your TNT representative. The customer must supply a list of valid
TNT account numbers to be used with the system. A secure connection is thus set up, using both authentication and
secure protocols, to submit requests and to receive processed consignment labels based on the published URL:

https://express.tnt.com/expresslabel/documentation/getlabel

Sample scripts are provided to show how a connection can be achieved together with example requests and
responses to illustrate the data required; see Connecting to ExpressLabel. Consideration is given below to the
networking and security requirements to ensure that this is successful.

The data that is returned can then be stored for later use, or rendered for sending to a printer and attaching to the
consignment.

This document is structured as follows:

• Registration
• Making a request to the TNT server
• Example XML Label Request Document
• Input XML Format - the structure and content of the request
• Processing the response - information about the data that will be returned
• Errors - possible error messages and the steps you can take to resolve them
• Connecting to ExpressLabel
• Appendices

1.1 Legend
The following conventions have been used throughout this document.

Normal The majority of text in this document is in this style. Section in this style are
part of the narrative of the document

Code Sections or words in this text indicate a section of XML,
XML element, or section of code.

[0..1] Digits within square brackets indicate the number of times an element may
occur in an XML document. Examples include:

[1] The element must appear once in the document
[0..*]. The element may appear once, many times (unlimited) or not at all.
[0..1] The element is optional. If it appears, it must appear only once.
[1..5] The element may appear any number of times between 1 and 5 times

xsd:string This indicates one of the schema types, in this case a string. More information
on defined schema data types can be found at
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

… Means that the section has been omitted for the sake of clarity. This usually
means that the omitted elements are described elsewhere or that the section
where they appear is a repetition of a previous stanza.

For example:
 <house>
 <room>
 <width unitOfMeasure="m">12</width>
 </room>
<!-- the next room contains the same dimensions sections as the one above. -->
 <room>…</room>
 </house>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 7 of 80

2. Registration
Each customer is set up with a username and password, required for all communications with the system. The user
id takes the form of an email address. You should choose an email address that is monitored: we may use this email
to communicate membership information and service status reports. In addition, it may be used to communicate
changes and improvements to the service

In return, you will be given the following information:

• A consignment number range allocation
• Default collection time for your depot
• Value for the following attributes of your consignments:

1 . Line of Business
2 . Group Id
3 . Sub Group Id
4 . Available Services - this is the list of product codes from which you can select
5 . Valid option codes are provided for each service or product by your TNT representative

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 8 of 80

3. Making a request to the TNT server
To make a label request, you must construct an XML file which conforms to the standard set out in this document.
The submission will be validated to check for any problems with the structure of the XML. This facility is provided
to allow you to self-diagnose problems with the XML.

Before sending an XML document over the internet to TNT, you should verify that you understand the XML format
by successfully using the ExpressLabel Website provided by TNT, contact your TNT representative for further
information. The audience for the website is intended to be developers who can use it as a tool to test their XML and
to analyse results, prior to and during the development of client applications. It includes a Test Harness that allows
the developer to submit sample XML to the service.

Please note that the site requires you to enter your user id and password before displaying the test harness.

• ExpressLabel now supports UTF-8 characters.
• The demonstration site links to a production like environment so that it replicates exactly the results that the

customer will achieve with their completed application.

Having made a successful submission of an XML document via the test page, you are ready to set up a socket
connection and make a programmatic submission using HTTP POST to the following URL:

https://express.tnt.com/expresslabel/documentation/getlabel

Please be aware that all submissions to the aforementioned URL will require you to supply your user id and
password as part of the POST request.

More detailed information on connecting to the ExpressConnect servers can be found in Connecting to
ExpressLabel.

3.1 Service Level Agreement (SLA)
The SLA is specified as follows:

There is a 1.3 second SLA which is the time between the first byte of the request being received on the TNT server
and the first byte of the response leaving the server. There is no way to control the network between the client and
TNT so this element can not be included.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 9 of 80

4. Example XML Label Request Document
An example is provided below of a typical label request. The request specifies a single consignment, with
consignment number 123456782 and a customer reference of Robert's computer. When the consignment is in the
TNT network the consignment number and customer reference can be used to track its progress.

A key uniquely identifies the consignment for the given request; where the request batches multiple consignment
label requests, each consignment element must be allocated a unique key. The collection date and time are
specified. The collection date can be up to 5 days ahead. The collection time will be provided by your TNT
representative. Finally, the collection address is specified in the sender stanza.

<?xml version="1.0" encoding="UTF-8"?>
<labelRequest>
 <consignment key="CON1">
 <consignmentIdentity>
 <consignmentNumber>123456782</consignmentNumber>
 <customerReference>Robert's computer</customerReference>
 </consignmentIdentity>
 <collectionDateTime>2008-06-12T13:00:00</collectionDateTime>
 <sender>
 <name>Karen Bradley</name>
 <addressLine1>TNT Express</addressLine1>
 <addressLine2>TNT House</addressLine2>
 <addressLine3>Holly Lane</addressLine3>
 <town>Atherstone</town>
 <exactMatch>Y</exactMatch>
 <province>Warks</province>
 <postcode>CV9 1TT</postcode>
 <country>GB</country>
 </sender>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 10 of 80

The delivery address specified where the consignment will be delivered. The next two sections product and
account, contain information about the product or service for the consignment, and the TNT account to be used for
the consignment.

Following the product, and account, the next sections describe the contents of the consignment. A
totalNumberOfPieces element is required to identify the total number of pieces or packages in the consignment.
The last section, pieceLine, describes the packages, giving their measurements, description, and reference
numbers.

 <delivery>
 <name>TNT Corporate Head Office</name>
 <addressLine1>Neptunusstraat 41-63</addressLine1>
 <addressLine2>2132 JA Hoofddorp</addressLine2>
 <town>Amsterdam</town>
 <exactMatch>Y</exactMatch>
 <province/>
 <postcode>1011 AA</postcode>
 <country>NL</country>
 </delivery>
 <product>
 <lineOfBusiness>2</lineOfBusiness>
 <groupId>0</groupId>
 <subGroupId>0</subGroupId>
 <id>EX</id>
 <type>N</type>
 <option>PR</option>
 </product>
 <account>
 <accountNumber>100445</accountNumber>
 <accountCountry>GB</accountCountry>
 </account>
 <totalNumberOfPieces>3</totalNumberOfPieces>
 <pieceLine>
 <identifier>1</identifier>
 <goodsDescription>piecelinegoods desc</goodsDescription>
 <pieceMeasurements>
 <length>1.11</length>
 <width>1.11</width>
 <height>1.11</height>
 <weight>1.11</weight>
 </pieceMeasurements>
 <pieces>
 <sequenceNumbers>1,2</sequenceNumbers>
 <pieceReference>keyboard and mouse</pieceReference>
 </pieces>
 <pieces>
 <sequenceNumbers>3</sequenceNumbers>
 <pieceReference>computer tower</pieceReference>
 </pieces>
 </pieceLine>
 </consignment>
</labelRequest>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 11 of 80

5. Input XML format
The input XML format for ExpressLabel is a list of consignments for which routing labels are required.

The structure for a label request is described below in detail. Alternatively, refer to Appendix A which contains a
summary of the points below.

The request has the following structure:

• Header – always required, this defines the XML document
• Label Request– A list of consignment for which a routing label is required

5.1 Header
The header section will begin every ExpressLabel request XML document submitted to TNT.

This contains the XML declaration, which contains the character encoding used for the document and the standalone
attribute, which should be set to “no”:

5.2 The LabelRequest element

A Label request at a high level is structured as shown is Diagram 1:

A labelRequest contains between 1 and 5 consignment elements. This allows batching of consignment routing
label requests. Each consignment element contains the set of information needed to generate routing labels for the
consignment referenced.

<labelRequest>
 <consignment key="consignment1">…</consignment>
 <consignment key="consignment2">…</consignment>
 <consignment key="consignment3">…</consignment>
 …
</labelRequest>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

Note
It should be noted that XML defines a number of characters which are reserved. These include the greater-than
(>), less-than (<), ampersand (&), and percent (%) characters. Where these appear in the data which is being
submitted to ExpressLabel, the characters must be escaped or the content surrounded with a CDATA section.

A common requirement is to submit an address which includes a company name such as: "Andrews &
Plummer". The ampersand must therefore be escaped as per the XML rules (&) or alternatively the whole
or part of the text must be wrapped in a CDATA section as follows:

 …
 <name><![CDATA[Andrews & Plummer]]></name>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 12 of 80

A consignment element contains a key attribute that identifies it uniquely within the request. The response will
associate label data and validation errors which their consignment label requests through this key. The value of this
key must be of type string and is only valid in express label for a single transaction - i.e. ExpressLabel does not
retain any history of the keys used once a request has been processed and a response sent to the client system.

5.3 The consignment element

Each consignment element contains the following information:

A consignment is made up of the following parts. Except where noted, every element is required once. A
consignment contains consignmentIdentity information which uniquely identifies it within TNT. For more
information, see Section 5.4 . The collectionDateTime, a standard schema datetime type is described in
Appendix A

• The sender address from which the consignment will be collected. The structure of an address is described
in further detail in Section 5.6.

• The delivery address to which the consignment will be delivered. The structure of an address is described in
Section 5.6.

• The TNT product to be used for the consignment. See Section 5.7
• The TNT account that will be charged for the consignment. Section 5.8
• The total number of pieces in the consignment.
• One or many pieceLine elements. Piece line is described in more detail in Section 5.10.

5.4 The ConsignmentIdentity element

The consignment identifies the consignment uniquely within TNT.

<labelRequest>
 <consignment key=" xsd:string ">
 <consignmentIdentity> ... </consignmentIdentity> [1]
 <collectionDateTime> xsd:datetime </collectionDate> [1]
 <sender> ... </sender> [1]
 <delivery> ... </delivery> [1]
 <contact> ... </contact> [0..1]
 <product> ... </product> [1]
 <account> ... </account> [1]
 <specialInstructions> ... </specialInstructions> [0..1]
 <cashAmount> ... </cashAmount> [0..1]
 <totalNumberOfPieces> xsd:int </totalNumberOfPieces> [1]
 <pieceLine> ... </pieceLine> [1..99]
 </consignment> [1..5]
</labelRequest>

<consignmentIdentity>
 <consignmentNumber> xsd:string </consignmentNumber> [1]
 <customerReference> xsd:string </customerReference> [0..1]
</consignmentIdentity>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 13 of 80

It contains a consignmentNumber element which should have a consignment number from a range allocated to
you by your TNT representative. You should ensure that any given number is allocated to only one consignment.
Failure to do so may result in the consignment being allocated a new number which will make it difficult to track.

You may also supply a customer reference. The customer reference can be used to track the consignment from
collection to delivery.

5.5 The collectionDateTime element

The date and time the consignment will be collected. The time part of this value will be provided by your
representative. The date is the date the consignment will be collected. The format of a date time is yyyy-mm-
ddThh:MM:ss

Format Date Component Description
yyyy The year in four digits. e.g. 2008
mm The month in digits, January is 01, December is 12
dd Day of the month. Valid range is 1 to 31
hh The collection hour in 24 hour notation.
MM The minutes from 00 to 60. If the hour is 24, the minute value must be 00
ss The seconds from 00 to 60. If the hour is 24, the second value must be 00

All other characters - the dashes, colons, and the capital T which separates the day from the hour - are literals which
must appear as they are shown above.

5.6 The sender and delivery elements

The sender element represents your company address from which consignment will be collected by our driver.
The delivery is the address the consignment will be delivered to. As the definition for these two addresses is
identical, we've identified them below as address_type_element.

These sections contain the following elements, all of type string:

• The name of company at the given premises
• addressLine1 is the first line of the address. This line usually contains a building name or number
• Address lines 2 and 3 are optional. They may contain additional information to help locate the address
• The town for the address
• Whether the town name should be used as an exact or partial match

<address_type_element>
<name> xsd:string </name> [1]
<addressLine1> xsd:string </addressLine1> [1]
<addressLine2> xsd:string </addressLine2> [0..1]
<addressLine3> xsd:string </addressLine3> [0..1]
<town> xsd:string </town> [1]

 <exactMatch> exactMatchEnum </exactMatch> [0..1]
<province> xsd:string </province> [0..1]
<postcode> xsd:string </postcode> [0..1]

 <country> xsd:string </country> [1]
</address_type_element>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 14 of 80

• The province is also known as the region or county.
• The postcode of the address
• The ISO 3166-1 Alpha-2 country code. More information can be found in Appendix C

5.7 The contact element
The contact element is specific to some labels but not all of them. The French Domestic label is an example of
where this data is used. The contact data is returned in the output xml and then should be rendered to the label in
this case.

5.8 The product element

The product element contains the following elements. The values in this section will be provided by your TNT
representative.

You may supply up to five options for your consignment. Valid option codes are provided for each product by your
TNT representative

5.9 The account element

Your TNT account is specified by giving the account number and the 2 digit ISO 3166-1 Alpha-2 country code in
which the account is registered. See figure 1b.

5.10 The specialInstructions element

The special instructions data is used by some labels but not all. The French Domestic label, for example, has room
on it for the special instructions to be displayed. As a result of not all labels requiring this data, it is an optional
field.

<account>
 <accountNumber> xsd:long </accountNumber> [1]
 <accountCountry> xsd:string </accountCountry> [1]
</account>

<product>
<lineOfBusiness> integerMin0Max9 </lineOfBusiness> [1]
<groupId> integerMin0Max9 </groupId> [1]
<subGroupId> integerMin0Max9 </subGroupId> [1]
<id> stringMaxLength4 </id> [1]
<type> productTypeEnum </type> [1]
<option> stringMaxLength4 </option> [0..5]

</product>

<contact>
<name> stringMaxLength30 </name> [0..1]
<telephoneNumber> stringMaxLength30 </telephoneNumber> [0..1]
<emailAddress> xsd:string </emailAddress> [0..1]

</contact>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 15 of 80

5.11 The cashAmount element

The cashAmount data is very similar to the specialInstructions element and is, therefore, an optional field.

5.12 The totalNumberOfPieces element

The totalNumberOfPieces element contains the integer number of pieces, or packages in your consignment.
The maximum number of pieces supported is 99.

5.13 The pieceLine element

You may specify any number of piece line elements. A piece line is defined as the group of packages which are
identical in weight and dimensions. The stanza for a piece line element is shown below:

A piece line contains the following sub-elements:

• The pieceLines are assigned incrementally higher numbers from 1 i.e. the first piece line is assigned
identifier value of 1, the second is assigned a value of 2, and so on.

• The goodsDescription is the full goods description for customs purposes.
• A pieceMeasurements contains the length, width, height, and weight of each piece in the pieceLine
• The pieces element may be repeated as many times as necessary but appears at least once. It allows

flexibility in assigning piece references through which the parts of the consignment can be tracked. The
sequenceNumbers element identifies the packages that should be assigned a specified
pieceReference.

<pieceLine>
<identifier> xsd:int </identifier> [1]
<goodsDescription> xsd:string </goodsDescription> [1]
<pieceMeasurements>

<length> xsd:double </length> [1]
<width> xsd:double </width> [1]
<height> xsd:double </height> [1]
<weight> xsd:double </weight> [1]

</pieceMeasurements> [1]
<pieces>

<sequenceNumbers> xsd:string </sequenceNumber> [1..99]
<pieceReference> xsd:string </pieceReference> [1]

</pieces> [1..99]
</pieceLine> [1..99]

<totalNumberOfPieces> xsd:int </totalNumberOfPieces> [1]

<cashAmount> doubleTwoDecimalPlaces </cashAmount> [0..1]

<specialInstructions> xsd:string </specialInstructions> [0..1]

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 16 of 80

Perhaps the simplest way to explain the way that this works is through an example. Imagine that you are a supplier
of computer parts. You have an order that is made up of computer mice, some of which are urgently needed. As a
result, you would like to track the set of urgently required parts as a group. The order is made up of 6 mice, all
packages identical, of which the first 4 are urgent. The section of XML that would allow you to do so might be:

<pieceLine>
<identifier>1</identifier>
<goodsDescription>Computer mice - laser</goodsDescription>
<pieceMeasurements>

<length>1.2</length>
<width>1.2</width>
<height>1.2</height>
<weight>0.1</weight>

</pieceMeasurements>
<pieces>

<sequenceNumbers>1,2,3,4</sequenceNumbers>
<pieceReference>PO00001-CL02</pieceReference>

</pieces>
<pieces>

<sequenceNumbers>5,6</sequenceNumbers>
<pieceReference>PO00002-CL03</pieceReference>

</pieces>
</pieceLine>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 17 of 80

6. Processing the XML Response
It is envisaged that the majority of system using ExpressLabel will take one of the following approaches to render
the label:

1. Use a component provided by TNT to be integrated into your application like Style Sheets.
2. Development of a custom rendering component by the client, in order the layout of TNT

requirements.

The document that is returned by the system is a standard XML document. It contains a Header and a single root
element containing the remaining elements. The document will contain a <consignment> element for each
successful label request - one that passed validation and contained all of the information necessary to create a
routing label. This document can be cached in a database or in a file in order to allow later printing and re-printing
of labels.

In addition to consignment elements, there may be a number of <brokenRules> elements. These elements
represent validation errors, and may be used to report on the availability of the system.

Before the document can be used to render routing labels for each consignment, there are a number of checks that
must be made:

• The document is inspected to match <consignment> sections with the consignments they represent.
• These sections can be submitted to the rendering tool to produce routing labels.
• Alternatively, the document or portions of it may be cached in a database or file for re-printing or later printing.
• The document is inspected to check for <brokenRules> elements. Any invalid requests should be investigated

and amendments made for a resubmission (see Errors section).

Before investigating each of these, the section below will briefly review an example response document.

6.1 High level description of an XML Label Response Document
The first section contains the usual XML header; see Header and Root Element. The ROOT node for the response is
a routingLabels element. This element typically contains a consignment element for each consignment label
request.

A consignment stanza begins with a list of pieceLabelData sections, one per piece in the consignment. This
represents the data that varies from piece to piece. Each pieceLabelData section contains:

• piece number
• piece reference
• The barcode to be rendered for the routing label.

The remaining data is common to all piece labels and is gathered together in the consignmentLabelData
element. This section contains:

• The consignment number as it should be shown on the label
• The portions of the sender and delivery addresses that should be shown on the label.
• Account number
• Total number of pieces
• The product and option information
• Operational information to be displayed on the label e.g. date / market / transport/ free circulation / sort

split text / x-ray etc.
• The routing or depot information pertaining to the consignment

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 18 of 80

6.1.1Routing Label Overview
The main sections of the routing label are identified below:

Logo

Market Display:
International (INT) or
Domestic (DOM)

Transport mode: AIR,
ROAD, or mixed mode

Free Circulation Display: C
may be present or not

Sort Split Indicator

Product

Option

Consignment Number

Piece Number

Piece Reference or if
not supplied then
Customer Reference

Account Number

Sender / Origin Address

Delivery / Destination Address

Cluster Code or if not
supplied then delivery
address postcode

Barcode

Collection Date

Transit Depots

Sort Cell Indicator e.g.
for LGG depot or Action
Day of Week e.g. for
QAR depot

Due Day of Month

Destination Depot

Origin Depot

Airport Sort Code

X-Ray required

Weight

Hazardous production
option included

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 19 of 80

6.1.2 Header and Root Element
As explained above, the header section will begin every ExpressLabel response XML document sent back by TNT.
This contains the XML declaration, which defines the encoding of the document. The root element,
labelResponse may contain up to 5 consignment sections and a maximum of 10 brokenRules sections.

If the system has encountered a fatal error, this will appear as a fault. This is discussed in more details in the
section on Errors.

6.1.3 consignment Sections
A consignment section contains information required to print routing labels for all pieces of a consignment. The
format of the consignment element includes the consignmentNumber child element. This value can be used to
match consignment sections with the consignment they apply to.

Each consignment can result in multiple routing labels, one per package in the consignment. Each consignment
element contains two types of information: data specific to each piece and data which are common to all pieces of
the consignment. The consignment section is therefore composed of two parts, pieceLabelData and
consignmentLabelData. There may be between 1 and 99 pieces i.e. pieceLabelData in each consignment
response and exactly one consignmentLabelData.

 <pieceLabelData> [0..99]
<pieceNumber> xsd:int </pieceNumber> [1]
<pieceReference> xsd:string </pieceReference> [1]
<barcode>...</barcode> [1]

 </pieceLabelData> [1..99]

 <consignmentLabelData> [1]
<consignmentNumber> xsd:string </consignmentNumber> [1]
...
<marketDisplay>...</marketDisplay> [1]
<transportDisplay>...</transportDisplay> [0..1]
<freeCirculationDisplay>...</freeCirculationDisplay> [0..1]
<sortSplitText> xsd:string </sortSplitText> [0..1]
<xrayDisplay>...</xrayDisplay> [0..1]
<originDepot>...</originDepot> [1]
<transitDepots>...</transitDepots> [0..1]
<destinationDepot>...</destinationDepot> [1]
<clusterCode> xsd:string </clusterCode> [0..1]
...

 </consignmentLabelData> [1]

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<labelResponse>
 <consignment>…</consignment> [0..5]
 <brokenRules>…</brokenRules> [0..10]
</labelResponse>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 20 of 80

It is important to note that XML does not make any guarantees about the presence of whitespace
(spaces/returns/tabs) in the document. You should use standard tools and methodologies for inspecting the contents
of the document and not depend on finding elements in a specific character location.

The label below illustrates the parts of the label which vary by package:

6.2 Detailed description of an XML Label Response Document

The following sections contain a more detailed description of each part of the routing label.

6.2.1 Logo
The logo section of the label is used for branding purposes. A brand compliant TNT logo is available at
http://brandweb.tnt.com/index.asp and included as part of the developer pack for ExpressLabel which will provided
by your TNT representative. The carrier name will be TNT in all cases.

6.2.2 Market Indicator
The market indicator can be set to either DOM (Domestic) or INT (International). The applicable response XML is:

<marketDisplay renderInstructions="yes"><![CDATA[INT]]></marketDisplay>

 <pieceLabelData> [0..99]
<pieceNumber> xsd:int
</pieceNumber> [1]
<pieceReference> xsd:string
</pieceReference> [1]
<barcode>...</barcode> [1]

 </pieceLabelData> [1..99]

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 21 of 80

In the example XML code, the value that should be rendered in the label is "INT". The renderInstructions
attribute is used to determine how the market should be displayed. Possible values include:

• yes - the element's value should be displayed black on white
• no - the element's value should not be displayed
• highlighted - the element's value should be displayed inverted (white on black)

The style for this element is as follows:

Font Size: 14pt
Font Family: Arial
Font Weight: Bold

6.2.3 Transport Mode
The transport indicator identifies the mode of transport that the consignment will be transported by, the possible
values are:

• AIR
• ROAD
• ROAD – AIR (deprecated)
• AIR – ROAD (deprecated)

This appears in the response as follows:

The value in the example above is "AIR”, the renderInstructions attribute is used to determine how the market
should be displayed. Possible values include:

• yes - the element's value should be displayed black on white
• no - the element's value should not be displayed
• highlighted - the element's value should be displayed inverted (white on black)

The style for this element is as follows:

Font Size: 14pt
Font Family: Arial
Font Weight: Bold

<transportDisplay renderInstructions="yes">AIR</transportDisplay>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 22 of 80

6.2.4 Free Circulation Indicator
The free circulation indicator is based on the trade status of the consignment and is used for operational purposes by
EU countries to determine if a consignment is customs controlled or not. Possible values are “C” or blank. The XML
in the response that corresponds to this is as follows:

The value that should be displayed on the label is between the freeCirculationDisplay elements, for example, in this
case it would be “C”. The renderInstructions attribute is used to determine how the market should be
displayed. Possible values include:

• yes - the element's value should be displayed black on white
• no - the element's value should not be displayed
• highlighted - the element's value should be displayed inverted (white on black)

The style for this element is as follows:

Font Size: 35pt
Font Family: Arial
Font Weight: Bold

6.2.5 Sort Split Indicator
The sort split indicator is used for operational purposes by the Liege Airhub to process the consignment. Possible
values for this field are 1 or 2. The value is blank if there is a hazardous product option included in the request. If the
consignment is hazardous then the sort split indicator will remain blank. The XML in the response that corresponds
to this is as follows:

The value that should be displayed is the text content of the sortSplitText element, in this case "2". The style for
this element is as follows:

Font Size: 35pt
Font Family: Arial
Font Weight: Bold

<freeCirculationDisplay renderInstructions="highlighted">
 <![CDATA[C]]>
</freeCirculationDisplay>

<sortSplitText><![CDATA[2]]></sortSplitText>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 23 of 80

6.2.6 Hazardous
The hazardous indicator on the label is not an xml tag in its own right. Instead it is put on the label when there is a
production option HZ. If Hazardous is to be displayed, then the split-sort indicator (6.2.5) should be blank.

The value that should be displayed is the text “HAZARDOUS". The style for this element is as follows:

Font Size: 14pt
Font Family: Arial
Font Weight: Bold

6.2.7 X-Ray
The x-ray indicator is used for operational purposes. The XML in the response that corresponds to this is as follows:

The value that should be displayed is the text content of the xrayDisplay element, in this case "X-RAY". The
style for this element is as follows:

Font Size: 14pt
Font Family: Arial
Font Weight: Bold

6.2.8 Consignment Number
The consignment number provides a unique identifier for the consignment. The international consignment number
consists of 9 numbers; however, local domestic consignment numbers might differ from this. The XML in the
response that corresponds to this is as follows:

The value that should be displayed on the label is between the consignmentNumber tags, in this case
"123456782". The recommended styles for this element are as follows:

<consignmentNumber>123456782</consignmentNumber>

<xrayDisplay code="" renderInstructions="yes">X-RAY</xrayDisplay>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 24 of 80

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 18pt
Font Family: Arial
Font Weight: Bold

6.2.9 Product
The Product is used to identify the service level for the consignment, for example: Express, Economy. The
maximum length of this field is 30 characters. The related XML is:

The value that should be displayed on the label is between the product tags, in this example it is "Express". The
recommended styles for this element are as follows:

6.2.10 Piece
The piece section of the label displays the current piece number and the total number of pieces for the consignment.
If at the time of printing the label, the total number of pieces is unknown, the field will contain a special code (000
or XXX). The XML in the response that corresponds to this is as follows:

<product id="EX">Express</product>

<pieceNumber>1</pieceNumber>

Font Size: 14pt or 11pt
depending on length of field
Font Family: Arial
Font Weight: Bold

Font Size: 8pt
Font Family: Arial
Font Weight: Bold

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 25 of 80

The value that should be displayed on the label is between the pieceNumber tags and totalNumberOfPieces
element respectively, for example, in this case it would be “1 of 3”. The pieceNumber represents one of the
sequenceNumber (s) specified in the request. The recommended styles for this element are as follows:

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 14pt
Font Family: Arial
Font Weight: Bold

6.2.11 Weight
The piece section of the label also displays the consignment or piece weight. The preferred choice is for the actual
weight to be displayed, if available, otherwise the contractual weight will be shown. For multi-piece shipments
where no actual or contractual piece weights are available, no weight will be printed on the label. The contractual
weight on consignment level will only be printed in case of single piece shipments (also for self-labeling customers).
In case of a piece weight above 25kg, the weight will be displayed in inverse text. The applicable response XML is:

The value that should be displayed on the label is between the weightDisplay elements, for example, in this case it
would be “1.1 Kg”. The renderInstructions attribute is used to determine how the weight should be displayed.
Possible values include:

• yes - the element's value should be displayed black on white
• no - the element's value should not be displayed
• highlighted - the element's value should be displayed inverted (white on black)

The recommended style for this element is as follows:

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

<weightDisplay renderInstructions="yes">
 <![CDATA[1.1 Kg]]>
</weightDisplay>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 26 of 80

Font Size: 14pt
Font Family: Arial
Font Weight: Bold

For overweight shipments the styles will remain the same; however the weight will be displayed inverted (white on
black), as shown below:

6.2.12 Option
The option section of the label displays any options that can be added as part of the product/service selected, for
example priority (PR), insurance (IN). It is possible to have up to 5 options per consignment; the maximum length
of an option description is 30 characters, for example, “Pre-delivery Notification (SMS)”. The applicable response
XML is:

If the consignment only has one option, the value is displayed on the label; however, if the consignment has more
than one option, contents of the id attributes are concatenated space delimited. E.g. "PR IN PNS". The
recommended styles for this element are as follows:

6.2.13 Customer Reference
The customer reference provides a method for the customer to identify a particular consignment or piece as an
alternative to the consignment number. If a piece reference is supplied, this will display as the Customer Reference.
If no piece reference is supplied then the customer reference is displayed instead. If no customer reference is
supplied then the field is left blank. The maximum length of any value is 24 characters. The XML in the response
that corresponds to this is as follows:

<option id="PR"><![CDATA[Priority]]></option>

<pieceReference><![CDATA[piece1]]></pieceReference>

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 12pt or 9pt
depending on length of field
Font Family: Arial
Font Weight: Bold

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 27 of 80

The recommended styles for this element are as follows:

6.2.14 Account
The account maximum field length is 10 digits. Depending on the payment terms this is either the sender or the
receiver account number. The XML in the response that corresponds to this is as follows:

The value that should be displayed on the label is between the accountNumber tags, for example, in this case it
would be “100445”. The recommended styles for this element are as follows:

6.2.15 Collection Date
The collection date or pickup date indicates the date on which the consignment will be collected. The XML in the
response that corresponds to this is as follows:

The value that should be displayed on the label is between the collectionDate tags, this will need to be rendered
into the format “dd MONTH yyyy”, in this case "12 June 2008". The recommended styles for this element are as
follows:

<account>
 <accountNumber>100445</accountNumber>
 <accountCountry>GB</accountCountry>
</account>

<collectionDate>2008-06-12</collectionDate>

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 8pt
Font Family: Arial
Font Weight: Bold

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 28 of 80

6.2.16 Origin Depot
The origin depot is the depot where the consignment will be taken to once it has been collected from the customer.
The depot is displayed on the label as a unique 3 letter code e.g. “CVT”. The XML in the response that corresponds
to this is as follows:

The value that should be displayed on the label is between the depotCode tags which sit within the originDepot
Element. The recommended styles for this element are as follows:

6.2.17 Sender & Delivery Address
The sender and delivery address provide information about the location the consignment is going from and to. The
field lengths are as follows:

• name – 40 characters
• address line length – 30 characters
• town – 40 characters
• province – 30 characters
• postcode – 9 characters
• country – 2 characters (Must be a valid ISO 3166-1 ALPHA-2 code (two-letter country codes in the ISO

3166-1 standard used to represent countries and dependent territories). See list of valid codes in appendix
C.)

The XML in the response that corresponds to this is as follows:

<originDepot>
 <depotCode>CVT</depotCode>
</originDepot>>

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 16pt
Font Family: Arial
Font Weight: Bold

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 29 of 80

The value that should be displayed on the label is between the sender tags for the sender address and the delivery
tags for the delivery address. The recommended style for these elements is as follows:

6.2.18 Contact

The contact details are part of the response xml only when the contact element is in the initial request. This tag is
not required for many of the labels.

<sender>
 <name><![CDATA[Steve Matthews]]></name>
 <addressLine1><![CDATA[TNT Express]]></addressLine1>
 <addressLine2><![CDATA[TNT House]]></addressLine2>
 <town><![CDATA[ATHERSTONE]]></town>
 <province><![CDATA[Warks]]></province>
 <postcode><![CDATA[CV9 1TT]]></postcode>
 <country><![CDATA[GB]]></country>
</sender>
<delivery>
 <name><![CDATA[TNT Corporate Head Office]]></name>
 <addressLine1><![CDATA[Neptunusstraat 41-63]]></addressLine1>
 <addressLine2><![CDATA[2132 JA Hoofddorp]]></addressLine2>
 <town><![CDATA[AMSTERDAM]]></town>
 <province><![CDATA[]]></province>
 <postcode><![CDATA[1011 AA]]></postcode>
 <country><![CDATA[NL]]></country>
</delivery>

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

<contact>
<name><![CDATA[Fred Blogs]]></name>
<telephoneNumber>012345 456789</telephoneNumber>

</contact>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 30 of 80

6.2.19 Routing
The route provides information about any transit depots that the consignment will pass through on route from origin
to destination. There can be up to 4 transit depots that are displayed on the label from top to bottom in the order the
consignment will pass through them. Each depot is represented by a unique three digit depot code, for example.
"EMA (East Midlands Airport)". There are two special transit depot types that contain extra information that needs
to be displayed on the label:

• Sort depot – The sort depot status applies to all Document consignments that pass through LGG (Liege).
An extra piece of information known as the sort cell indicator is displayed alongside the depot code. This is
used for operational purposes within the depot. Example e.g. ‘LGG-8’.

• Action Depot – The action depot status applies to all consignments that pass through Duiven (QAR). An
extra piece of information known as the "action day of week" is displayed alongside the depot code. This
used for operational purposes within the depot. Example e.g. ‘QAR-1’.

The XML in the response that corresponds to this is as follows:

Standard Transit Depot

The value that should be displayed on the label is between the depotCode tags, for example, in this case it would
be “EMA”. It is important to make sure that the depotCode tags are enclosed within a transitDepot element.

Sort Depot

The value that should be displayed on the label is between the depotCode elements, for example, in this case it
would be "LGG". In addition to this the value between the sortCellIndicator elements will need to be added along
with the depot code, in this case that would result in a value to be displayed of "LGG - 8". It is important to make
sure that the elements used are those enclosed within a sortDepot element.

Action Depot

The value that should be displayed on the label is between the depotCode tags, for example, in this case it would
be "QAR". In addition to this the value between the actionDayOfWeek tags will need to be added alongside the

<transitDepot>
 <depotCode>EMA</depotCode>
</transitDepot>

<sortDepot>
 <depotCode>LGG</depotCode>
 <sortCellIndicator renderInstructions="yes">8</sortCellIndicator>
 <sortLocationCode>LGG</sortLocationCode>
</sortDepot>

<actionDepot>
 <depotCode>QAR</depotCode>
 <actionDayOfWeek>1</actionDayOfWeek>
 <actionDate>2008-06-16</actionDate>
</actionDepot>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 31 of 80

depot code, in this case that would result in a value to be displayed of "QAR - 1". It is important to make sure that
the elements used are enclosed within an actionDepot element.

The recommended styles for this element are as follows:

6.2.20 Airport Sort Code
The airport sort code is used by the Liege Air hub (LGG) only and will be printed for non-docs traveling through
LGG. The code helps Liege to make fine sorts on behalf of the destination hub. The XML in the response that
corresponds to this is as follows:

The recommended styles for this element are as follows:

6.2.21 Destination Depot
The destination depot is the final depot where the consignment will be taken to before it is delivered to the customer.
The depot is displayed on the label as a unique 3 letter code e.g. “SP8”. In addition to the depot code the due day of
month is also displayed alongside the depot code and this indicates the estimated date the consignment should reach
the destination depot. The XML in the response that corresponds to this is as follows:

<sortLocationCode>LGG</sortLocationCode>

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 24pt
Font Family: Arial
Font Weight: Bold

Font Size: 20pt
Font Family: Arial
Font Weight: Bold

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

<destinationDepot>
 <depotCode>SP8</depotCode>
 <dueDayOfMonth>16</dueDayOfMonth>
 <dueDate>2008-06-16</dueDate>
</destinationDepot>>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 32 of 80

The value that should be displayed on the label is between the depotCode elements, for example, in this case it
would be “SP8”. In addition to this the value between the dueDayOfMonth elements should be displayed alongside
the depot code, for example, in this case it would be “SP8 - 13”. It is important to make sure that the depotCode
elements are enclosed with a destinationDepot element. The recommended styles for this element are as
follows:

6.2.22 Postcode / Cluster Code
The cluster code is used by the destination depot for operational purposes. If the cluster code is not present then the
delivery address postcode is used instead. The XML in the response that corresponds to this is as follows:

The value that should be displayed on the label is between the clusterCode elements, for example, in this case it
would be "30". Even if the cluster code is not found the delivery postcode will still be included within the
clusterCode elements. The recommended styles for this element are as follows:

Font Size: 26pt for cluster code and 16pt for postcode
Font Family: Arial
Font Weight: Normal

<clusterCode>30</clusterCode>

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

Font Size: 22pt
Font Family: Arial
Font Weight: Bold

Font Size: 8pt
Font Family: Arial
Font Weight: Normal

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 33 of 80

6.2.23 Legal Comments

Legal comments are provided for some labels but not all. Domestic country labels, such as the French Domestic
label, have specific legal comments included.

6.2.24 Cash Amount

The Cash Amount appears on some labels when the ‘Cash On Delivery’ production option is selected, as is the case
of the French Domestic label. This is an optional tag in the request and if not present as part of the request xml will
not be present in the output xml.

6.2.25 Special instructions

This is another tag which only appears when provided on the request xml and only appears on some labels but not
all.

6.2.26 Barcode

The barcode is used operationally to quickly identify and process the consignment; the barcode standard is Code128
with a length of 28. Individual domestic country labels may have multiple barcodes. In this case the length of the
additional barcodes may vary. The XML in the response that corresponds to this is as follows:

The barcode value that should be displayed on the label is between the barcode elements. This value will need to be
passed to a barcode generator such as Barbecue to create the actual barcode.

The recommended styles for this element are as follows:

<barcode symbology="128C">1100123456783011641011000000</barcode>

<legalComments>SOUMIS AUX CONDITIONS GENERALES DU TRANSPORT</legalComments>

<cashAmount code="12.34" renderInstructions="yes">EUR 12,34</cashAmount>

<specialInstructions>Please be careful as there are currently no road markings</specialInstructions>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 34 of 80

The barcode should be printed horizontally and use the following dimensions:

• Height: minimum 30mm
• Width: minimum 70mm
• X-Dimension: 0.4mm
• Quiet zones: Quiet zones are the white space left, right, above and below the barcode. They will be 10 * X-

dimension but with a minimum of 5mm

This can only really be tested with a barcode reader and support can usually be found at your nearest depot.

6.2.27 Barcode For Customer

This is a tag with is only present in the output of xml for some labels but not all. The French Domestic label allows
for the creation of a barcode for the pieceReference tag which is provided as part of the pieces tag in the
request. The barcodeForCustomer does not have the same size constraints as the main TNT consignment
barcode and may vary from label to label. However, the tag does have similar structure to the main barcode tag as
can be seen from this example.

Font Size: 9pt
Font Family: Arial
Font Weight: Normal

<barcodeForCustomer symbology="128C">135792468</barcodeForCustomer>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 35 of 80

7. Errors
There are a number of different errors that may occur when using ExpressLabel. Many of these are likely to be
encountered in the initial development phase and are concerned with the format of the XML message and the
presence of data items.
The remaining messages are concerned with validation of the data items and the availability of the service. The error
messages are shown below:

It would be sensible to ensure that your code is capable of handling all of the potential error messages returned by
ExpressLabel.

7.1 Application generated errors
Application errors are included in your returned XML as they occur and take the following format:

• BrokenRules – These errors are returned as result of verification and validation of the request data.

• Fault – These errors are returned as result of an unexpected exception that has occurred during a request.

• XML processing error – These errors are returned if the XML supplied with the request does not comply
with the ExpressLabel request schema and thus cannot be successfully parsed.

For possible BrokenRules errors see Table of application generated error codes, messages and resolutions on the
following pages.

Error 406: Unable to process request message:Bad DateTime format: 2008--
12T13:00:00
DateTime is not long enough

<?xml version="1.0" encoding="UTF-8"?>
<labelResponse>
 <brokenRules key="CON1">
 <errorCode>1003</errorCode>
 <errorDescription>Consignment number is not the correct
length.</errorDescription>
 </brokenRules>
</labelResponse>

<?xml version="1.0" encoding="UTF-8"?>
<labelResponse>
 <fault key="CON1"/>
</labelResponse>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 36 of 80

7.2 Table of application generated error codes, messages and resolutions
The Default Message column contains the English language message that is returned with each code. This value is intended to be used by systems
integrators. For content management you should use the error code.

An element is considered empty if it contains no value or only whitespace. Therefore all of the following elements are empty:

Key:

* Error codes marked with this symbol are not currently used as part of the application.
If this field is empty the value will default to “0” which will either result in a valid label or a 9200 error.

Error
Code

Error Description Default Message Resolution

1001

The consignmentIdentity element
is missing.

Consignment Identity must be
provided.

Ensure consignmentIdentity element is provided.

You will get this error is the element is altogether missing from the
request. If the element is present but its child elements are missing, you
will get Codes 1002, or 1004

1002

The consignmentNumber element
is missing, empty or not numeric.

Consignment number must be
entered.

Ensure consignmentNumber element is provided and has numeric
data.

Example problems are shown below:

Empty element:
<consignmentNumber/>

Alpha characters in the con number value:
<consignmentNumber>GB123456782X</consignmentNumber>

1003 Consignment number provided is not
the correct length.

Consignment number is not the
correct length.

Ensure consignment number is 9 digits long.

<emptyElement/>

<emptyElement></emptyElement>

<emptyElement> </emptyElement>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 37 of 80

Error
Code

Error Description Default Message Resolution

1004 * The customerReference element
is missing or empty.

Customer reference must be
entered.

Ensure customerReference element is provided and has data.

1005 Customer reference exceeds maximum
length.

Customer Reference has exceeded
its maximum length.

Ensure customer reference is no longer than 25 characters.

2001 The collectionDateTime
element is missing or empty.

Collection date must be entered. Ensure collectionDateTime element is provided and has data.

3001 Sender address (the sender element)
is missing

A sender address must be provided. Ensure sender element is provided.

3002
Sender address name (the name
element within the sender element) is
missing or empty.

Sender address: name must be
entered

Ensure the name element within the sender element is provided and has
data.

3003 Sender address name exceeds it
maximum length.

Sender address: name has
exceeded its maximum length

Ensure sender address name is no longer than 40 characters.

3004
Sender address line 1 (the
addressLine1 element within the
sender element) is missing or empty.

Sender address: address line 1
must be entered.

Ensure the addressLine1 element within the sender element is
provided and has data.

3005 Sender address line 1 exceeds its
maximum length.

Sender address: address line 1 has
exceeded its maximum length.

Ensure sender address line 1 is no longer than 30 characters.

3006

Sender address line 2 (the
addressLine2 element within the
sender element) exceeds its
maximum length.

Sender address: address line 2 has
exceeded its maximum length.

Ensure sender address line 2 is no longer than 30 characters.

3007

Sender address line 3 (the
addressLine3 element within the
sender element) exceeds its
maximum length.

Sender address: address line 3 has
exceeded its maximum length.

Ensure sender address line 3 is no longer than 30 characters.

3008
Sender address town (the town
element within the sender element) is
missing or empty.

Sender address: town must be
entered

Ensure the town element within the sender element is provided and
has data.

3009 *

Sender address town (the town
element within the sender element)
and postcode (the postcode element
within the sender element) are null or
empty. This may occur for countries
that require both a town and postcode
to be entered.

Sender address: town & postcode
must be entered

Ensure the town and postcode elements within the sender element
are provided and have data.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 38 of 80

Error
Code

Error Description Default Message Resolution

3010

Sender address town could not be
found. This may occur for a town that
is entered that is not valid for the
country and province chosen.

Sender address: town could not be
found

Ensure the town element within the sender element is entered
correctly.

3011 Sender address town exceeds it
maximum length.

Sender address: town has
exceeded its maximum length

Ensure sender town is no longer than 40 characters.

3012 Sender address town results in more
than one match.

Sender address: town results in
more than one match

Ensure sender town and/or postcode are entered correctly. Do not use
partial town or postcodes.

3013
Sender address province (the
province element within the sender
element) exceeds it maximum length.

Sender address: province has
exceeded its maximum length

Ensure sender province is no longer than 30 characters.

3014 *
Sender province has been entered for a
country that does not accept province
as part of the address.

Sender address: provinces not
accepted in the address for this
country

Remove the province element from within the sender element.

3015 *

Sender address province could not be
found. This may occur for a province
that is entered that is not valid for the
country and postcode chosen.

Sender address: province could
not be found

Ensure sender province is entered correctly or remove the province
element from within the sender element.

3016
Sender address postcode (the
postcode element within the sender
element) is invalid.

Sender address: postcode is
invalid

Ensure the postcode element within the sender element is entered
correctly.

3017
Sender address postcode has an invalid
format. For example CV9 XTT is
incorrect for a UK postcode.

Sender address: postcode format is
invalid

Ensure the postcode element within the sender element is entered
correctly and is no longer than 9 characters.

3018
Sender address postcode matches more
than one town. This may occur if a
partial postcode is entered.

Sender address: postcode matches
more than one town

Ensure sender postcode and/or town are entered correctly.

3019

Sender address has an invalid town /
postcode combination. For example if
you entered a London postcode for
Birmingham.

Sender address: invalid town
postcode combination

Ensure sender postcode and/or town are entered correctly.

3020

Sender address postcode has been
entered for a country that does not
accept postcode as part of the address.

Sender address: postcode not
accepted in the address for this
country.

Remove the postcode element from within the sender element.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 39 of 80

Error
Code

Error Description Default Message Resolution

3021 *

Sender address postcode could not be
found. This may occur for a postcode
that is entered that is not valid for the
country and town chosen.

Sender address: postcode could
not be found

Ensure sender postcode is entered correctly.

3022 *
Sender address postcode is not within
the valid range of postcodes for the
town.

Sender address: postcode not
within the valid range for the town
selected

Ensure sender postcode and/or town are entered correctly.

3023
Sender address country (the country
element within the sender element) is
missing or empty.

Sender address: country must be
entered

Ensure the country element within the sender element is provided
and has data.

3024 * Sender address country is not the
correct length.

Sender address: country is not the
correct length.

Ensure the sender country is exactly 2 characters long.

3025

Sender address country is not a valid
ISO 3166-1 ALPHA-2 code (two-
letter country codes in the ISO 3166-1
standard used to represent countries
and dependent territories). See list of
valid codes in appendix D.

Sender address: country is not
valid ISO 3166-1 ALPHA-2.

Ensure sender country is entered correctly.

3026

Sender address has more than one
match. The underlying system cannot
distinguish between two physical
addresses given the supplied sender
address information. For example
where a postcoded country has two
towns with the same name and the user
has not supplied a postcode.

Sender address: address has more
than one match

Ensure sender postcode, town and/or country are entered correctly.

4001 Delivery address (the delivery
element) is missing

A delivery address must be
provided.

Ensure delivery element is provided.

4002
Delivery address name (the name
element within the delivery
element) is missing or empty.

Delivery address: name must be
entered

Ensure the name element within the delivery element is provided and
has data.

4003 Delivery address name exceeds it
maximum length.

Delivery address: name has
exceeded its maximum length

Ensure delivery address name is no longer than 40 characters.

4004

Delivery address line 1 (the
addressLine1 element within the
delivery element) is missing or
empty.

Delivery address: address line 1
must be entered.

Ensure the addressLine1 element within the delivery element is
provided and has data.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 40 of 80

Error
Code

Error Description Default Message Resolution

4005 Delivery address line 1 is too long. Delivery address: address line 1
has exceeded its maximum length.

Ensure delivery address line 1 is no longer than 30 characters.

4006

Delivery address line 2 (the
addressLine2 element within the
delivery element) exceeds its
maximum length.

Delivery address: address line 2
has exceeded its maximum length.

Ensure delivery address line 2 is no longer than 30 characters.

4007

Delivery address line 3 (the
addressLine3 element within the
delivery element) exceeds its
maximum length.

Delivery address: address line 3
has exceeded its maximum length.

Ensure delivery address line 3 is no longer than 30 characters.

4008
Delivery address town (the town
element within the delivery
element) is missing or empty.

Delivery address: town must be
entered

Ensure the town element within the delivery element is provided and
has data.

4009 *

Delivery address town and postcode
are null or empty. This may occur for
countries that require both a town and
postcode to be entered.

Delivery address: town &
postcode must be entered

Ensure the town and postcode elements within the delivery
element are provided and have data.

4010

Delivery address town could not be
found. This may occur for a town that
is not valid for the country and
province chosen.

Delivery address: town could not
be found

Ensure the town element within the delivery element is entered
correctly.

4011 Delivery address town exceeds it
maximum length.

Delivery address: town has
exceeded its maximum length

Ensure delivery town is no longer than 40 characters.

4012 Delivery address town results in more
than one match.

Delivery address: town results in
more than one match

Ensure delivery town and/or postcode are entered correctly.

4013

Delivery address province (the
province element within the
delivery element) exceeds it
maximum length.

Delivery address: province has
exceeded its maximum length

Ensure delivery province is no longer than 30 characters.

4014 *

Delivery address province has been
entered for a country that does not
accept province as part of the address.

Delivery address: provinces not
accepted in the address for this
country

Remove the province element from within the delivery element.

4015 *
Delivery address province could not be
found. This may occur for a province
that is entered that is not valid for the

Delivery address: province could
not be found

Ensure delivery province is entered correctly or remove the province
element from within the delivery element.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 41 of 80

Error
Code

Error Description Default Message Resolution

country and postcode chosen.

4016
Delivery address postcode (the
postcode element within the
delivery element) is invalid.

Delivery address: postcode is
invalid

Ensure the postcode element within the delivery element is entered
correctly.

4017

Delivery address postcode has an
invalid format. For example CV9 XTT
is an incorrect format for a UK
postcode.

Delivery address: postcode format
is invalid

Ensure the postcode element within the delivery element is entered
correctly and is no longer than 9 characters.

4018
Delivery address postcode matches
more than one town. This may occur if
a partial postcode is entered.

Delivery address: postcode
matches more than one town

Ensure delivery postcode and/or town are entered correctly.

4019

Delivery address has an invalid town /
postcode combination. This may occur
if the postcode entered is not linked to
the town entered, for example if you
entered a London postcode for
Birmingham.

Delivery address: invalid town
postcode combination

Ensure delivery postcode and/or town are entered correctly.

4020
Delivery address postcode has been
entered for a country that does not
accept postcode as part of the address.

Delivery address: postcode not
accepted in the address for this
country.

Remove the postcode element from within the delivery element.

4021 *

Delivery address postcode could not
be found. This may occur for a
postcode that is entered that is not
valid for the country and town chosen.

Delivery address: postcode could
not be found

Ensure delivery postcode is entered correctly.

4022 *
Delivery address postcode is not
within the valid range of postcodes for
the town.

Delivery address: postcode not
within the valid range for the town
selected

Ensure delivery postcode and/or town are entered correctly.

4023

Delivery address country (the
country element within the
delivery element) is missing or
empty.

Delivery address: country must be
entered

Ensure the country element within the delivery element is provided
and has data.

4024 * Delivery address country is not the
correct length.

Delivery address: country is not
the correct length.

Ensure the delivery country is exactly 2 characters long.

4025
Delivery address country is not a valid
ISO 3166-1 ALPHA-2 code See list
of valid codes in appendix D.

Delivery address: country is not
valid ISO 3166-1 ALPHA-2.

Ensure delivery country is entered correctly.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 42 of 80

Error
Code

Error Description Default Message Resolution

4026

Delivery address has more than one
match. For example where a post
coded country has two towns with the
same name and the user has not
supplied a postcode.

Delivery address: address has
more than one match

Ensure delivery postcode, town and/or country are entered correctly.

4031 The postcode element is missing Delivery address: postcode must
be entered

Ensure the delivery postcode is present. Postcode is normally optional
but some domestic labels (eg FR) have the postcode as mandatory

5001 The product element is missing

Product must be provided. Ensure product element is provided.

5002 #
Line of business code is missing. Line of business must be entered. Ensure the lineOfBusiness element within the product element is

provided and has data of 1 numeric character.

5003 #
Product group id is missing. Product group id must be entered. Ensure the groupId element within the product element is provided

and has data of 1 numeric character.

5004 #
Product sub group id is missing. Product sub group id must be

entered.
Ensure the subGroupId element within the product element is
provided and has data of 1 numeric character.

5005
Product id (the id element within the
product element) missing or empty.

Product id must be entered. Ensure the id element within the product element is provided and has
data of no more than 4 characters.

5006 *
No service is available for the product
entered.

No feasible service available for
the requested product.

Ensure the details for the elements within the product element are
entered correctly.

5007 *
One of the options is not valid for the
product entered.

Option is not valid for the product
chosen.

Ensure the option element or elements within the product element are
entered correctly and each has data of no more than 4 characters.

6001 The account element is missing. Account must be provided. Ensure account element is provided.

6002
Account number is missing or empty. Account number must be entered. Ensure the accountNumber element within the account element is

provided and has data.

6003 Account number is not the correct
length.

Account number is not the correct
length.

Ensure account number is no longer than 10 numeric characters.

6004

Account country is missing or empty.
Country code needs to be a valid ISO
3166-1 ALPHA-2 code (two-letter
country codes in the ISO 3166-1
standard used to represent countries
and dependent territories). See list of
valid codes in appendix D.

Account country must be entered. Ensure the accountCountry element within the account element is
provided and has data.

6005 Account country is not the correct
length.

Account country is not the correct
length.

Ensure account number is exactly 2 characters.

7001 The totalNumberOfPieces
l t i i i t

Total number of pieces must be
t d

Ensure totalNumberOfPieces element is provided with numeric
d t

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 43 of 80

Error
Code

Error Description Default Message Resolution

element is missing or empty. entered. data.

7002
The total number of pieces is less than
the number of pieces supplied.

Total number of pieces declared is
less than the number of pieces
supplied.

Check total number of pieces entered and the number of piece lines
provided (see below for piece lines) and correct so total is not less than
the number of piece lines provided.

7003
The total number of pieces exceeds the
maximum allowed.

Cannot have a total number of
pieces greater than 999.

Ensure value entered in totalNumberOfPieces element is no
greater than 999.

7004
The piece sequence number exceeds
the total number of pieces declared.

Piece sequence higher than the
total number of pieces declared.

Ensure value entered in totalNumberOfPieces element is greater
than or equal to the highest sequenceNumbers.

8001 No pieceLine elements are
provided.

Piece lines must be provided. Ensure at least one pieceLine element is provided.

8002
Piece line identifier is missing or
empty.

Piece line identifier must be
entered.

Ensure the identifier element within the pieceLine element is
provided and has data.

8003
Piece line goods description is missing
or empty.

Piece line goods description must
be entered.

Ensure the goodsDescription element within the pieceLine
element is provided and has data.

8004 Piece line goods description exceeds it
maximum length.

Piece line goods description has
exceeded its maximum length

Ensure the goods description is no longer than 30 characters.

9001
No piece measurements are provided. Piece measurements must be

provided.
Ensure pieceMeasurements element is provided within the
pieceLine element.

9002
Piece length is missing or empty. Piece measurements: length must

be entered.
Ensure the length element is provided within the
pieceMeasurements element with numeric data (2 decimal places).

9003 Piece length not in the valid range. Piece measurements: length value
not within valid range.

Ensure piece length value is no greater than 100.

9004
Piece width is missing or empty. Piece measurements: width must

be entered.
Ensure the length element is provided within the
pieceMeasurements element with numeric data (2 decimal places).

9005 Piece width is not within the valid
range.

Piece measurements: width value
not within valid range.

Ensure piece width value is less than 100.

9006
Piece height is missing or empty. Piece measurements: height must

be entered.
Ensure the height element is provided within the
pieceMeasurements element with numeric data (2 decimal places).

9007 Piece height is not within the valid
range.

Piece measurements: height value
not within valid range.

Ensure piece height value is less than 100.

9008
Piece weight is missing or empty. Piece measurements: weight must

be entered.
Ensure the weight element is provided within the
pieceMeasurements element with numeric data (3 decimal places).

9009 Piece weight is not in the valid range. Piece measurements: weight value
not within valid range.

Ensure piece weight value is less than 100000.

9101 No pieces are provided. Pieces must be provided. Ensure pieces element is provided within the pieceLine element.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 44 of 80

Error
Code

Error Description Default Message Resolution

9102 *
Piece reference is missing or empty. Piece reference must be entered. Ensure pieceReference element is provided within the pieces

element.

9103 Piece reference exceeds it maximum
length.

Piece Reference has exceeded its
maximum length.

Ensure piece reference is no longer than 25 characters.

9104
Piece sequences are missing or empty. Piece sequence numbers must be

entered.
Ensure sequenceNumbers element is provided with data within the
pieces element.

9105
Piece sequences provided are invalid
e.g. negative or zero.

Invalid piece sequence number
value.

Ensure the sequenceNumbers element within the piece element is
entered correctly. Note: 1 error is returned PER invalid sequence number,
so for ‘0, -1, -2’, three errors are returned.

9106

Piece line has too many pieces exceed
the maximum allowed.

More than the maximum 99 pieces
provided on a piece line

Remove one or more of pieces elements within the pieceLine
element or remove some of sequence numbers from one of the
sequenceNumbers element within one of the pieces elements such
that total pieces defined does not exceed 99.

9200

A system CDC_6004 common codes
error (no data returned) has been
encountered. There are a number of
different causes that may lead to this
error being returned.

Issue with validating TNT
common systems data

Contact local CIT representative with a copy of the XML supplied.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 45 of 80

8. Connecting to ExpressLabel
ExpressLabel is a HTTP Web Service. It defines and supports the XML, Hessian, and Burlap data protocols. In the
sections below we have shown various examples, using Java and PHP. XML is the preferred data protocol as it
provides more backwards compatibility between versions.

In order to connect to ExpressLabel, therefore, you must construct a request using the chosen data protocol.

8.1 Choosing a request protocol
How do we choose a protocol? In order to select an appropriate protocol, you should identify the technology you
intend to use. Various technologies provided different levels of support for Hessian, Burlap, and XML. In addition,
the quality of internet connection between your application (hereafter known as the Client System) and
ExpressLabel will contribute towards your decision.

The ExpressLabel system performs comparably for any of the protocols listed below. The contribution of the
network to the performance of the system is therefore the main consideration in choosing the right protocol.

In order of size of the messages, Hessian is most efficient, followed by XML, and then Burlap. While in many
locations, internet performance can be expected to be sub-second, this can vary according to the exact region, the
time of day and the number of users connected. As a general rule, therefore, the XML protocol is the recommended.

8.1.1 XML
XML is the default and recommended choice for connecting to ExpressLabel. The message size is larger than with
Hessian but XML has the big advantage that it is backwards compatible as new versions are released. XML is
usually much simpler to develop as the message are human readable and can be constructed using simple String
manipulation.

If an xml transfer is to be used the http header Content-Type must be set to either ‘Content-Type: text/xml’
or ‘Content-Type: application/x-www-form-urlencoded’.

8.1.2 Hessian
Hessian is a binary protocol aimed at web services. For these reasons it is efficient and very suitable for internet
connections, where the quality of the connection can vary over time. Hessian messages are typically 1/5 the size of
equivalent XML messages. More information about Hessian can be found at http://hessian.caucho.com, and an
example program is available with this document which outlines the main steps, see Java Hessian Connection
Example.

With Hessian the Objects are serialized and then de-serialized at the receiving end. This means that the objects
which are being serialized must be the same at both ends. The biggest disadvantage of both Hessian and Burlap is
that when an upgrade to ExpressLabel affects the transferred Objects, then the client size Objects must also be
updated. This is a significant drawback to using a binary protocol.

8.1.3 Burlap
Burlap is a simplified XML protocol which offers an automated way to produce requests. It is provided by the same
organisation which defines the Hessian protocol and therefore software written for Hessian can be seamlessly
swapped to use Burlap, see http://hessian.caucho.com/doc/burlap.xtp.

As Burlap is more verbose than our own XML request definition, it is not recommended for production use. You
may wish to use it for a period during development as it results in human-readable messages which can be helpful
for debugging.

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 46 of 80

The following section provides code examples that explain how to connect to ExpressLabel.

8.2 Java XML Connection Example
Even for a simple XML connection a number of jar files are recommended,

a. commons-httpclient-3.1.jar (http://hc.apache.org/httpclient-3.x/)
b. commons-logging-1.1.1.jar (http://commons.apache.org/)
c. commons-codec-1.3.jar (http://commons.apache.org/)

There are a number of useful xml libraries as part of the standard Java SE version, which may also be useful in
parsing the result xml.

8.3 Java Hessian Connection Example
In order to run this example, you will need a number of jars. These will be supplied by your CIT representative as
part of the engagement for ExpressConnect adoption, once the client technology is identified.

The libraries required to run this code example are as follows and are included in the example code download, see
your TNT representative for further information:

public class XMLTestApp {

 public static void main(String[] args) throws IOException {

 // Create the xml request
 StringBuilder xmlRequest = new StringBuilder();
 xmlRequest.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
 xmlRequest.append("<labelRequest>");
 // complete the xml...

 // Post xml request to ExpressLabel
 String url =
 "https://express.tnt.com/expresslabel/documentation/getlabel";
 PostMethod post = new PostMethod(url);

 // Create the authentication element
 String userPassword = "user" + ":" + "password";
 String encoding = Base64.encodeBase64(userPassword.getBytes());
 post.addRequestHeader("Authorization", "Basic " + encoding);

 // Create the entity and put it in the post method
 RequestEntity entity =
 new StringRequestEntity(xmlRequest, "text/xml", null);
 post.setRequestEntity(entity);

 // Create a HttpClient to do the transfer
 HttpClient httpClient = new HttpClient();
 int result = httpClient.executeMethod(post);

 // Get the response as bytes or a stream for parsing the xml response
 byte[] xmlBytes = post.getResponseBody();
 InputStream is = post.getResponseBodyAsStream();
 }
}

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 47 of 80

a. cts-documentation-x.x.x.jar (Only the iface package is required if this is available separately)
b. expresslabel-castor-x.x.x.jar
c. cts-common-x.x.x.jar
d. commons-httpclient-3.1.jar (http://hc.apache.org/httpclient-3.x/)
e. hessian-3.1.3.jar (http://hessian.caucho.com/#Java)
f. commons-logging-1.1.1.jar (http://commons.apache.org/)
g. commons-codec-1.3.jar (http://commons.apache.org/)

where x.x.x will be the current version required for connection to production. Please note that the following code
depends on a JDK5 implementation.

8.3.1 Create a Marshaller
The first step is to create a simple Hessian Marshaller class that will be used to convert Java objects to Hessian and
back again, see code below:

8.3.2 Populate the request data objects
The next step is to create an ELRoutingLabelRequestVO object to pass consignment data to ExpressLabel. The
method below can be used to create a valid request. In the example code, the data is provided statically for the sake
of clarity and brevity rather than populated from a form, client system, or file.

 /**
 * Take the input stream from the http request and convert it to Java
 */
 public Object unmarshal(InputStream in) throws IOException {
 if (in == null)
 throw new IllegalArgumentException("No input stream supplied");
 }
 Hessian2Input hessianInput = new Hessian2Input(in);
 return hessianInput.readObject();
 }
}

public class Hessian2Marshaller {
 /**
 * Convert the Java objects into a byte array then send it to the service.
 */
 public byte[] marshal(Object obj) throws IOException {
 if (obj == null) {
 throw new IllegalArgumentException("No object supplied");
 }
 ByteArrayOutputStream out = new ByteArrayOutputStream();

 Hessian2Output s = new Hessian2Output(out);
 s.writeObject(obj);
 s.flush();
 out.flush();
 out.close();
 return out.toByteArray();
 }

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 48 of 80

8.3.3 Create the client integrator
The client integrator pulls all the elements together to make a request and receive the response. In our example, we
create a java class with a main method.

We initialise the request that will be posted to ExpressLabel. The call to the setupRoutingRequestCon()
method mentioned previously will return an ELRoutingLabelRequestVO object containing all of the required
request data for a single consignment. For a real application, this data would not be provided statically but injected
from a file, website, or client system.

The objects are stored in an Array List as this enables multiple consignments to be processed in one call. There is
currently a maximum limit of 5 consignments per batch.

• We obtain an instance of the Hessian Marshaller.
• Call the marshal method, which returns a byte array containing the Hessian request data.

• Setup a POST request to call ExpressLabel using the Apache HttpClient classes
• Define the URL where ExpressLabel is hosted and initialize the POST request object. You may wish to

externalize the configuration of this information in case the details change in the future.
• Encode username and password required by ExpressLabel security and add to request headers.
• Create a request entity which acts as a container for the Hessian request & add to POST request object.

public class HessianTestApp {

 public static void main(String[] args) throws IOException {

 // Create routing request object
 ELRoutingLabelRequestVO labelRequest = setupRoutingRequestCon();

 List<ELRoutingLabelRequestVO> labelRequests =
 new ArrayList<ELRoutingLabelRequestVO>();
 labelRequests.add(labelRequest);

 // Create routing response object
 List<ELRoutingLabelResponseVO> labelResponse =
 new ArrayList<ELRoutingLabelResponseVO>();

 // Get instance of ELRoutingLabelResponseVO Marshaller and BasicRequestHandler
 Hessian2Marshaller hessian2Marshaller = new Hessian2Marshaller();

 // Convert Request object to Hessian
 byte[] hessianRequest = hessian2Marshaller.marshal(labelRequests);

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 49 of 80

• Send POST request to ExpressLabel.
• Retrieve Hessian response in the form of a byte array.
• Call the unmarshal method on the Hessian Marshaller, which converts the Hessian response into an Array

List of ELRoutingLabelResponseVO objects.

• Display the response. In this example, we have output the response to the console. In production code, the

response would be processed to produce a label to be sent to the printer or saved to a database (Not part of
ExpressLabel) for later processing. An excerpt of the extraction is provided below:

 // Post Hessian request to ExpressLabel
 String url = "https://express.tnt.com/expresslabel/documentation/getlabel";
 String userPassword = "user" + ":" + "password";
 String encoding = Base64.encodeBase64(userPassword.getBytes());

 PostMethod post = new PostMethod(url);

 post.addRequestHeader("Authorization", "Basic " + encoding);

 RequestEntity entity = new InputStreamRequestEntity(
 new ByteArrayInputStream(hessianRequest), "hessian2");

 post.setRequestEntity(entity);

 HttpClient httpclient = new HttpClient();
 try {
 httpclient.executeMethod(post);
 byte[] hessianResponse = post.getResponseBody();

 // Convert Hessian response to ELRoutingLabelResponseVO objects
 labelResponse = (List<ELRoutingLabelResponseVO>)
 hessian2Marshaller.unmarshal(new ByteArrayInputStream(hessianResponse));

 } catch (HttpException e) {
 e.printStackTrace();
 } finally {
 // Release current connection to the connection pool once you are done
 post.releaseConnection();
 }

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 50 of 80

8.4 PHP Example
This example, written in PHP requires that the curl and OpenSSL extensions are running within the PHP installation.
To confirm that these extensions are enabled, run phpinfo() and look for the following sections in the results.

 Curl

cURL support enabled
cURL Information libcurl/7.16.0 OpenSSL/0.9.8 zlib/1.2.3

 OpenSSL

OpenSSL support enabled
OpenSSL Version OpenSSL 0.9.8g 19 Oct 2007

The ExpressLabelConnection class demonstrates how to connect to a remote server and send a request via an http
post method. This is all encapsulated in a single method call httpPost, which takes the following parameters:

• $url : The full url that the request should be submitted to https://server:port/application-path
• $strRequest: The string data that is to be posted as part of the request
• $userId: If authentication is required. The user id to log on with
• $password: If authentication is required. The password to log on with

We begin by declaring the class and the httpPost method.

<?PHP
 class ExpressLabelConnection {
 private $errorCode = 0;
 private $errorMessage = "";
 private $socketResponse = "";

 function httpPost($url, $strRequest,$userId, $password) {

RoutingLabelDataVO routingLabelData = labelResponse.get(0).getRoutingLabelData();

System.out.println("Broken Rules");
System.out.println(routingLabelData.getBrokenRules() + "\n");

if (labelResponse.get(0).getRoutingLabelData().getBrokenRuleCount() == 0) {

System.out.println("Consignment Identity");

System.out.println(routingLabelData.getConsignmentData().getConsignmentIdentity
());

 System.out.println("collectionDate=" +
 routingLabelData.getConsignmentData().getCollectionDate());

System.out.println("market=" +
 routingLabelData.getConsignmentData().getMarketDisplay().getOutputText());

}

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 51 of 80

We open a connection using the properties specified earlier. Our strRequest contains the XML which has been
constructed in the format specified elsewhere in this document. We submit the request and read the response,
looking for any connection errors in the response. Finally we close the connection. A few methods are defined for
returning error messages and/or the response.

An example using the above class is shown below:

 $ch=curl_init();
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

 $userPass = "";
 if ((trim($userId)!="") && (trim($password)!="")) {
 $userPass = $userId.":".$password;
 curl_setopt($ch, CURLOPT_USERPWD, $userPass);
 }

 curl_setopt($ch, CURLOPT_POST, 1) ;
 curl_setopt($ch, CURLOPT_POSTFIELDS, $strRequest);

 $isSecure = strpos($url,"https://");

 if ($isSecure===0) {
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);
 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);
 } }

 $result = curl_exec($ch);
 $this->errorCode = curl_errno($ch);
 $this->errorMessage = curl_error($ch);
 $this->socketResponse = $result;

 curl_close($ch);

 }

 …
 }
?>

ExpressLabel Integration Guide Version: 1.10

For General Release ©Express ICS, 2011 Page 52 of 80

<?PHP

 // Include the PHP file containing the ExpressLabelConnection class
 include_once("ExpressLabelConnection.PHP");

 //Set a variable containing the url that we will be posting to
 $url = 'https://express.tnt.com/expresslabel/documentation/getlabel';

 // set a variable containing the data to send in the post
 $strRequest = ‘### some xml data ###’;

 // set variables containing the authentication data
 $userId = “myuserid”;
 $password = “mypassword”;

 // get a new instance of the ExpressLabelConnection
 $expressLabelConnection = new ExpressLabelConnection();

 // Call the httpPost function to send the data to the expresslabel server
 $expressLabelConnection -> httpPost ($url, $strRequest, $userId, $password);

 // Check the error code and process accordingly
 if ($expressLabelConnection->getErrorCode() == 0) {
 // All has worked correctly.
 //Now get the response data and do something with it.
 $responseData = $expressLabelConnection->getSocketResponse();

 } else {
 // None Zero return code. Something has gone wrong.
 //Handle the error.

 $errorMessage = ($expressLabelConnection->getErrorMessage());
 }

?>

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 53 of 80

9. Appendix A: XML elements definition (input)

These tables contain all of the possible Input XML nodes and some information about their use. All elements are mandatory and must contain just one
instance unless stated in the table below.

XML elements which do not contain a value but are merely a container for other elements are noted as Container element, the elements contained therein
are described in the rows immediately below. Please remember that field values should be escaped using the ![CDATA[]] notation. At a minimum, all
address fields should be escaped. Failure to escape these areas could result in unexpected problems if the value in an element contains an Ampersand (&).

For all data types described with a type prefix of 'xsd:' see XSD Data Types.

For all customer data types see Section 10.1 Custom Data Types.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 54 of 80

XML ELEMENT DESCRIPTION COMMENTS

labelRequest Top level element for a message to
ExpressLabel.
Container element

The root XML element for a Label Request message. This element may contain up to 5
label requests, each one represented by a consignment element.

consignment The consignment element represents
a single request for a routing label(s).
Container element

Up to 5 label requests, each one in a consignment element, may be submitted. The
information within this element will be used to validate the addresses, determine the route,
and produce the label information. Each parcel or piece in the consignment will require its
own routing label. For this reason, routing labels are also known as piece labels.

Each consignment element must contain a key attribute that uniquely identifies the label
request. The value of the key may be any alphanumeric string - typically this value will be
an integer value i.e. the first request will have key="1", second value of key="2" and so
on. Any validation errors will be tagged with this key so that you can identify the request
in error.

consignmentIdentity Element to hold the Consignment
Number and Customer Reference.
Container element

This element identifies the consignment for the operational systems. TNT requires a TNT
valid consignment number and you may tag the consignment with your own String
customer reference. The customer reference can be used to track a consignment throughout
its journey.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 55 of 80

consignmentNumber Type = consignmentStringLength The TNT consignment number.

customerReference Type = xsd:string

Contains the optional customer reference for the consignment. A customer reference is a
way for a customer to designate a name for the consignment.

This value can be used to track the consignment at a later date.

collectionDateTime Type = xsd:dateTime
The date and time that the consignment will be collected, to be supplied in the format
CCYY-MM-DD'T'hh:mm:ss

For example 5:30 p.m. on 30th December 2008 will be supplied as 2008-12-30T17:30:00.

sender Type =
nameAndAddressRequestType /
nameAndAddressResponseType
Container element

The sender element holds the address from which the consignment is physically
collected. This will be used to obtain a route for the consignment and will also appear on
the label.

Information relating to name and address for a participant in the consignment. Examples
of a participant are:

 The Sender - the company sending the consignment
 The Receiver - the company receiving the consignment
 The Collection Address - the address from which the consignment is picked up
 The Delivery Address - the address to which the consignment should be delivered

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 56 of 80

Address information comprises of: name, address line 1, address line 2
(optional), address line 3 (optional), town, postcode (optional depending on the
country), province (optional) and country (see below).

delivery Type =
nameAndAddressRequestType /
nameAndAddressResponseType
Container element

The delivery element holds the address that the consignment is physically delivered to.
This will be used to obtain a route for the consignment and will also appear on the label.
The delivery element contains all the same children as sender. See below.

name Type = stringMaxLength40 Either the name of the company as recognised by TNT, or the contact name at the address

addressLine1 Type = stringMaxLength30 The first address line usually comprising house number and street. This address line is the
most commonly used of the three address lines and is therefore mandatory.

addressLine2 Type = stringMaxLength30 This address line may not be used by the supporting system and therefore should not
contain information essential to the address.

addressLine3 Type = stringMaxLength30 This address line is sometimes used to identify an address more exactly to obtain a route.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 57 of 80

NOTE - this address line will not appear on any routing label produced.

town Type = stringMaxLength40 The town name as recognised by TNT.

exactMatch Type = booleanEnum

(see comment)

Optional field to specify if the town name should be used as an exact match or a partial
match. Some town names are subsets of other names even with the postcode included.
This can lead to error code 3026 or 4026 (multiple addresses found). This flag can help
remove these errors. The default value for this option is Y.

booleanEnum: Data type for flagging if an exact town name match is required. Must be Y
or N

province Type = stringMaxLength30 Optional field to contain the province, county, state, or area for the given address.

postcode Type = stringMaxLength9 Postcode or zip code is considered a mandatory field where it is required for a given
country. If the postcode is not provided, it may not be possible to deliver the consignment
as indicated by your chosen service.

country Type =
stringMinLength2MaxLength2

The ISO 3166-1 Alpha-2 country code for the country of the given address.

contact Type = contactType This tag holds the information about the contact person for this consignment

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 58 of 80

Container element

name Type = stringMaxLength30 This is the name of the contact and appears on French Domestic labels

telephoneNumber Type = stringMaxLength30 This is the telephoneNumber of the contact and appears on French Domestic labels

emailAddress Type = xsd:string This is the email address of the contact

product Type = productType
Container element

Information relating to the TNT product chosen for this consignment (see elements
below). This element contains a lineOfBusiness, groupId, subGroupdId, type, id, and a list
of options.

The product ids you should use will be allocated to you by your TNT representative.

lineOfBusiness Type = integerMin0Max9 Line of business for product chosen. This value is allocated to you by your TNT
representative.

groupId Type = integerMin0Max9 Group id for product chosen. This value is allocated to you by your TNT representative.

subGroupId Type = integerMin0Max9 Sub group id for product chosen. This value is allocated to you by your TNT
representative.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 59 of 80

id Type = stringMaxLength4 TNT identifier for product chosen.

This value is allocated to you by your TNT representative.

type Type = ProductTypeEnum (see
Comment)

Type of service for product chosen. Values (as defined for ProductTypeEnum) are "D" for
a document or "N" for non-documents.

option Type = stringMaxLength4 Identifier for the type of option chosen for this consignment. Examples include “IN” for
Insurance, “PR” for Priority. This element is optional and may have up to 5 occurrences.

The list of options allowed will be supplied to you by your TNT representative.

account Type = accountType
Container element

The TNT account paying for the transport of this consignment. Includes information about
a TNT account which includes the account number and country code (see below).

accountNumber Type = longMaxLength10 TNT account number, which is the 9 or 10 digit number assigned by the TNT sales person.

accountCountry Type =
stringMinLength2MaxLength2

ISO 3166-1 Alpha-2 country code for the country in which the TNT account is registered.

specialInstructions Type = xsd:string These are the special instructions which should appear on a French Domestic label

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 60 of 80

cashAmount Type = doubleTwoDecimalPlaces This is the amount which will appear on the French Domestic label when the ‘Cash on
Delivery’ option is selected as part of the product. The code for this option is either ‘CO’
or ‘RP’

totalNumberOfPieces Type = xsd:int The total number of pieces this consignment contains. In cases where only some of the
pieces are being submitted, this value should contain the total number of pieces in the
consignment, not the total number of pieces in the request.

This is used to print the sequence numbers on the labels, e.g. 1 of x, where x is the value
provided here.

pieceLine Type = pieceLineType
Container element

A piece line is a group of pieces (or parcels) that have the same weight and dimensions.
This is a convenience to reduce the amount of data to be transmitted. In plain English this
equates to specifying "5 pieces of 0.2m x 0.3m x 0.4m each weighing 1kg" rather than
specifying each piece separately.

Piece line information comprises a unique identifier, goodsDescription,
pieceMeasurements (length, width, height and weight). See elements below.

identifier Type = xsd:int Identifier for the piece line so that it can be referenced during processing. Each piece line
type should have a unique number.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 61 of 80

goodsDescription Type = stringMaxLength30 Full description of goods being shipped (catalogue numbers or part numbers will not
suffice. The Customs Authorities want to know what each item actually is so please
carefully describe the goods).

pieceMeasurements Type = measurementsType
Container element

Dimension (height, width, length) and weight measurements relating to the pieces defined
by this piece line type. Data must be provided in metres for dimensions, kilograms for
weight. See below.

length Type =
doubleMaxExclusive100MinInclusive0.01

The length in metres. The length is the longest dimension of the piece.

width Type =
doubleMaxExclusive100MinInclusive0.01

The width in metres.

height Type =
doubleMaxExclusive100MinInclusive0.01

The height in metres.

weight Type =
doubleMaxExclusive100000MinInclusive0.01

The weight in kilograms.

pieces Type = pieceType
Container element

At least one of these sections should be provided per consignment up to a maximum of
one per piece, and up to 99 per consignment.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 62 of 80

This element is used to identify all the pieces that should be grouped together by the given
reference. The list of sequence numbers is included.

One sequenceNumber element per piece with a single pieceReference element.

sequenceNumbers Type = xsd:string List of the piece sequence numbers expressed as a comma delimited list, e.g. 1,2,5,n out of
a total of n pieces. The pieces are grouped by the piece reference.

pieceReference Type = xsd:string Customer reference for this piece or pieces. This value can be used to track the piece later
date.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 63 of 80

10. Appendix B : XSD Data Types

XSD DATA TYPE

DESCRIPTION

dateTime Data expected in the format CCYY-MM-DD'T'hh:mm:ss where CC indicates century, YY year, MM month in 2 digit
format, DD day of the month, hh hour of the day, mm minutes and ss seconds.

For example 5:30 p.m. on 30th December 2008 would be 2008-12-30T17:30:00. This data type describes instances
identified by the combination of a date and a time. It is described in Chapter 5.4 of ISO 8601 and the W3C XML
Schema Recommendation. Its lexical space is the extended format: [-]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]

double Numeric data with decimal places in the range -9007199254740991..9007199254740991.

int Numeric data without decimal places in the range -2147483648..2147483647

long Numeric data without decimal places in the range -9223372036854775808..9223372036854775807

string XML compatible alphanumeric data.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 64 of 80

10.1 Custom Data Types

CUSTOM DATA TYPE

DESCRIPTION

stringMinLengthXMaxLengthY Data type of type xsd:string with a minimum length of X and a maximum length of Y. If ‘MinLength’ is not specified
in the data type name (e.g. stringMaxLength4) there is no minimum length.

stringMaxLength4 As above but without a minimum length
integerMin0Max9 Data type of type xsd:int with a minimum value of 0 and a maximum value of 9.
doubleMaxExclusiveXMinInclusiveY Data type of type xsd:double with a value that must be less than X.

E.g. For ‘doubleMaxExclusive100MinInclusive0.01’ the value cannot exceed 99.99 or be 0 or less
doubleTwoDecimalPlaces This defines a double value with two decimal places only.
longMaxLengthX Data type of type xsd:long with a maximum length of X.

E.g. For ‘longMaxLength10’ the maximum value is 9999999999 (ten 9’s).
booleanEnum This data type defines an enumeration of Y or N only
productTypeEnum This data type defines ‘D’ or ‘N’, standing for Document or Non-document
consignmentStringLength This only allows for strings of 9 or 16 characters in length.

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 65 of 80

11. Appendix C: ISO 3166-1 Alpha-2 Country Codes

Country names ISO 3166-1-alpha-2 code
A
AFGHANISTAN AF
ÅLAND ISLANDS AX
ALBANIA AL
ALGERIA DZ
AMERICAN SAMOA AS
ANDORRA AD
ANGOLA AO
ANGUILLA AI
ANTARCTICA AQ
ANTIGUA AND BARBUDA AG
ARGENTINA AR
ARMENIA AM
ARUBA AW
AUSTRALIA AU

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 66 of 80

AUSTRIA AT
AZERBAIJAN AZ
B
BAHAMAS BS
BAHRAIN BH
BANGLADESH BD
BARBADOS BB
BELARUS BY
BELGIUM BE
BELIZE BZ
BENIN BJ
BERMUDA BM
BHUTAN BT
BOLIVIA BO
BOSNIA AND HERZEGOVINA BA
BOTSWANA BW
BOUVET ISLAND BV
BRAZIL BR

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 67 of 80

BRITISH INDIAN OCEAN
TERRITORY

IO

BRUNEI DARUSSALAM BN
BULGARIA BG
BURKINA FASO BF
BURUNDI BI
C
CAMBODIA KH
CAMEROON CM
CANADA CA
CAPE VERDE CV
CAYMAN ISLANDS KY
CENTRAL AFRICAN REPUBLIC CF
CHAD TD
CHILE CL
CHINA CN
CHRISTMAS ISLAND CX
COCOS (KEELING) ISLANDS CC

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 68 of 80

COLOMBIA CO
COMOROS KM
CONGO CG
CONGO, THE DEMOCRATIC
REPUBLIC OF THE

CD

COOK ISLANDS CK
COSTA RICA CR
CÔTE D'IVOIRE CI
CROATIA HR
CUBA CU
CYPRUS CY
CZECH REPUBLIC CZ
D
DENMARK DK
DJIBOUTI DJ
DOMINICA DM
DOMINICAN REPUBLIC DO
E

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 69 of 80

ECUADOR EC
EGYPT EG
EL SALVADOR SV
EQUATORIAL GUINEA GQ
ERITREA ER
ESTONIA EE
ETHIOPIA ET
F
FALKLAND ISLANDS (MALVINAS) FK
FAROE ISLANDS FO
FIJI FJ
FINLAND FI
FRANCE FR
FRENCH GUIANA GF
FRENCH POLYNESIA PF
FRENCH SOUTHERN TERRITORIES TF
G
GABON GA

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 70 of 80

GAMBIA GM
GEORGIA GE
GERMANY DE
GHANA GH
GIBRALTAR GI
GREECE GR
GREENLAND GL
GRENADA GD
GUADELOUPE GP
GUAM GU
GUATEMALA GT
GUERNSEY GG
GUINEA GN
GUINEA-BISSAU GW
GUYANA GY
H
HAITI HT
HEARD ISLAND AND MCDONALD HM

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 71 of 80

ISLANDS
HOLY SEE (VATICAN CITY STATE) VA
HONDURAS HN
HONG KONG HK
HUNGARY HU
I
ICELAND IS
INDIA IN
INDONESIA ID
IRAN, ISLAMIC REPUBLIC OF IR
IRAQ IQ
IRELAND IE
ISLE OF MAN IM
ISRAEL IL
ITALY IT
J
JAMAICA JM
JAPAN JP

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 72 of 80

JERSEY JE
JORDAN JO
K
KAZAKHSTAN KZ
KENYA KE
KIRIBATI KI
KOREA, DEMOCRATIC PEOPLE'S
REPUBLIC OF

KP

KOREA, REPUBLIC OF KR
KUWAIT KW
KYRGYZSTAN KG
L
LAO PEOPLE'S DEMOCRATIC
REPUBLIC

LA

LATVIA LV
LEBANON LB
LESOTHO LS
LIBERIA LR
LIBYAN ARAB JAMAHIRIYA LY

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 73 of 80

LIECHTENSTEIN LI
LITHUANIA LT
LUXEMBOURG LU
M
MACAO MO
MACEDONIA, THE FORMER
YUGOSLAV REPUBLIC OF

MK

MADAGASCAR MG
MALAWI MW
MALAYSIA MY
MALDIVES MV
MALI ML
MALTA MT
MARSHALL ISLANDS MH
MARTINIQUE MQ
MAURITANIA MR
MAURITIUS MU
MAYOTTE YT

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 74 of 80

MEXICO MX
MICRONESIA, FEDERATED STATES
OF

FM

MOLDOVA MD
MONACO MC
MONGOLIA MN
MONTENEGRO ME
MONTSERRAT MS
MOROCCO MA
MOZAMBIQUE MZ
MYANMAR MM
N
NAMIBIA NA
NAURU NR
NEPAL NP
NETHERLANDS NL
NETHERLANDS ANTILLES AN
NEW CALEDONIA NC

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 75 of 80

NEW ZEALAND NZ
NICARAGUA NI
NIGER NE
NIGERIA NG
NIUE NU
NORFOLK ISLAND NF
NORTHERN MARIANA ISLANDS MP
NORWAY NO
O
OMAN OM
P
PAKISTAN PK
PALAU PW
PALESTINIAN TERRITORY,
OCCUPIED

PS

PANAMA PA
PAPUA NEW GUINEA PG
PARAGUAY PY

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 76 of 80

PERU PE
PHILIPPINES PH
PITCAIRN PN
POLAND PL
PORTUGAL PT
PUERTO RICO PR
Q
QATAR QA
R
RÉUNION RE
ROMANIA RO
RUSSIAN FEDERATION RU
RWANDA RW
S
SAINT BARTHÉLEMY BL
SAINT HELENA SH
SAINT KITTS AND NEVIS KN
SAINT LUCIA LC

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 77 of 80

SAINT MARTIN MF
SAINT PIERRE AND MIQUELON PM
SAINT VINCENT AND THE
GRENADINES

VC

SAMOA WS
SAN MARINO SM
SAO TOME AND PRINCIPE ST
SAUDI ARABIA SA
SENEGAL SN
SERBIA RS
SEYCHELLES SC
SIERRA LEONE SL
SINGAPORE SG
SLOVAKIA SK
SLOVENIA SI
SOLOMON ISLANDS SB
SOMALIA SO
SOUTH AFRICA ZA

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 78 of 80

SOUTH GEORGIA AND THE SOUTH
SANDWICH ISLANDS

GS

SPAIN ES
SRI LANKA LK
SUDAN SD
SURINAME SR
SVALBARD AND JAN MAYEN SJ
SWAZILAND SZ
SWEDEN SE
SWITZERLAND CH
SYRIAN ARAB REPUBLIC SY
T
TAIWAN, PROVINCE OF CHINA TW
TAJIKISTAN TJ
TANZANIA, UNITED REPUBLIC OF TZ
THAILAND TH
TIMOR-LESTE TL
TOGO TG

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 79 of 80

TOKELAU TK
TONGA TO
TRINIDAD AND TOBAGO TT
TUNISIA TN
TURKEY TR
TURKMENISTAN TM
TURKS AND CAICOS ISLANDS TC
TUVALU TV
U
UGANDA UG
UKRAINE UA
UNITED ARAB EMIRATES AE
UNITED KINGDOM GB
UNITED STATES US
UNITED STATES MINOR
OUTLYING ISLANDS

UM

URUGUAY UY
UZBEKISTAN UZ

ExpressLabel Integration Guide Version: 1.10

Developer Notes

For General Release ©Express ICS, 2011 Page 80 of 80

V
VANUATU VU
VATICAN CITY STATE see HOLY SEE
VENEZUELA VE
VIET NAM VN
VIRGIN ISLANDS, BRITISH VG
VIRGIN ISLANDS, U.S. VI
W
WALLIS AND FUTUNA WF
WESTERN SAHARA EH
Y
YEMEN YE
Z
ZAMBIA ZM
ZIMBABWE ZW

a.- All documents provided by TNT for the purpose of technical
integration or deployed applications; is TNT PROPRIETARY
INFORMATION shared with the customer to support the commercial
relationship, not be shared beyond this purpose.
b.- When information needed to be shared with a third party to support
operations (for example 3PL), or any other technical third party such as
but not limited to software developer; it is the customer sole
responsibility to do so, and manage the relationship with their supplier
in terms of confidentiality, extending TNT's requirements. Ensuring that
their supplier does not retain any information after cease of relationship,
nor use TNT information for purpose different than enabling the
transactions stated in the commercial agreement.

